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Resumo 

Correlações no risco de crédito constituem um tópico bastante importante em finanças. Sob o 
novo acordo de Basiléia, as correlações constituem um parâmetro de vital importância para a 
avaliação de risco de um portfólio e para o cálculo do capital econômico dos bancos. Neste 
artigo são propostas duas formas alternativas para a estimação das correlações: modelagem 
bayesiana hierárquica e ajuste de distribuições. Para este objetivo, foram utilizados dados de 
mais de 300.000 empresas brasileiras, classificadas em cinco diferentes categoria de risco. 
Além disso, foram gerados através de simulações de Monte Carlo, carteiras hipótesticas, de 
diferentes tamanhos amostrais e com correlações distintas. A estimativa do parâmetro de 
correlação obtidas nessas simulações é interpretado como o tamanho do viés de pequena 
amostra das carterias. Os principais resultados, tanto na abordagem Bayesiana como no ajuste 
de distribuiçõe, mostram que o valor estimado da correlação entre os ativos das empresas 
brasileiras é bastante pequeno se comparado ao valor proposto no acordo de Basiléia, 
impactando diretamente no montante de capital regulatório requerido dos bancos pelo acordo 
de Basiléia II. 
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Abstract 

A leading topic in empirical finance is correlation among risk assets. Under the new Basel II 
Accord, correlations are regarded as parameters extremely important for credit risk 
evaluations on a portfolio basis and for banks' economic capital requirements. In this paper 
we propose two different approaches to estimate correlations: hierarchical Bayes modeling 
and distribution fit. Main results show that the asset's correlation value for the Brazilian firm's 
is remarkably less than the value proposed by the Basel Accord. We also detected that 
distribution fit methods are biased, so, the estimated parameters' coefficients should be 
corrected. To do so we conduct some Monte Carlo experimentation and compute the bias' 
size. 
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1. Introduction 

 Credit risk plays a major role in portfolio management, derivatives pricing and 
banking capital regulation. All the financial instruments with contingent payments have an 
associated probability that an issuer will default on its obligations in the future, thus, giving 
rise to a credit risk problem.  

 Default correlation is a measure of the dependence among risks. Along with default 
rates and recovery rates, it is a necessary input in the estimation of the portfolio credit risk. In 
general, the concept of default correlation incorporates the fact that systemic events cause the 
default event to cluster. Coincident movements in default among borrowers may be triggered 
by common, underlying factors. Within the context of retail portfolios, systemic events might 
include macroeconomic events such as changes in the rate of unemployment or 
geographically specific events. Default correlation is defined by Nagpal e Bahar (2001) as the 
relationship between default probabilities and joint default probabilities. They note that 
historical rates of default support the idea that credit events are correlated. This correlation is 
a critical factor in the estimation of the tails of the overall credit loss distributions. Thus, 
failure to recognize the impact of shocks to the portfolio through default correlation will 
ultimately underestimate the measures of risk and economic capital required to manage that 
risk. 

 There are several methodologies currently employed in the development of 
correlations within portfolios as discussed in Zhou (1997). For example, Loffler (2003) 
estimates default correlations based on the joint distribution of asset values. As discussed in 
Crouhy, Galai e Mark (2000), equity prices are often used as a proxy to estimate asset 
correlations given that asset values are not directly observable. One commonly employed 
method is the identification of a benchmark for the purpose of developing asset return 
correlations and then mapping these into default correlations. The approach requires making 
assumptions about the relationship between asset prices and default. However, this approach 
is not applicable within a retail context as there is no asset price for the individual borrower. 
Alternatively, correlations can be inferred from historical default volatilities as described 
generally within Appendix F of the CreditMetrics Technical Document (1997). 

According to structural credit risk models, as in Merton (1974), Duffie and Singleton 
(1999), and Eom, Helvege and Huang (2004), among many others, the correlation between 
default occurrences arises from the relation between company assets values. In the literature 
concerning estimations of correlations, a variety of values has been found, ranging from 0.5% 
to 50%. Gordy e Heitfield (2002), using S&P and Moody’s data found values ranging on the 
interval (5.1%; 13.5%), using maximum likelihood estimation. Again, Demey et al. (2004), 
found 9.4% of intra-sector correlation. Using the same methodology, Rösch (2003), using 
Germany data, found general correlation of 0.86% and, clustered by economic sectors, values 
from 0.54% to 3.52%. Finally, Göessl (2005), using S&P data and bayesian techniques trough 
Markov Chain Monte Carlo (MCMC), found a general value of  9.41%. 

 In this paper we estimate correlations using a one factor structural model as first 
presented by Vasicek (1991). The objectives of the paper are threefold. First we apply a 
bayesian hierarchical approach, using diffuse prior specifications, to estimate the default 

 



 

correlation parameters. Second, we conduct the same analysis using a classic model and 
compare the results. In light of these results, we concluded that the classical results are biased 
towards portfolios’ small sample. Then, finally, we estimate the bias’s size by means of 
Monte Carlo Simulation.  

 The paper is organized as follows. Next section presents a simple credit portfolio 
model; section 3 provides the bayesian hierarchical technique used and the obtained results. 
Section 4 introduces the distribution fit approach, and the results and the bias's corrected 
estimates obtained from Monte Carlo Simulation. Finally, section 5 concludes the paper. 

 

2. A Credit Portfolio Model 

 Consider the one factor model, as introduced by Vasicek (1991). Following Göessl 
(2005), let us consider a portfolio of N  credit risky assets , ia Ni ,,1 Κ= , each comprising 
one unit. Each of these assets can be classified into one of some finite risk 
classes , defining its risk profile completely. The rating classes have 
individual one year probabilities of default

}{ Ki RRr ,,1 Κ∈
K,j,

jR Κ1 =h , where the probability of default 

of a single debtor (PD), , for 
jRi hh = ji Rr = .  

 Further, let us suppose the respective instruments follow a one factor asset value 
model, i.e., it is assumed that a firm defaults when its asset value process  falls below the 
firm’s liabilities or a certain default frontier. The corresponding default frontier or threshold is 
determined by its individual risk profile or risk class . Let now  be described by a 
logarithm Wiener process: 
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a discrete version of (1) on a t  year horizon is defined as follows: 
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where  constitute the company exposure to common factor, invariant throughout the 
portfolio and  an idiosyncratic component, resembling an independent individual 
contribution of asset i  to its evolution over time. These two components are weighted by a 
correlation parameter,

tF

tiU ,

ρ , determining the intra-portfolio dependencies within the whole 
portfolio1.  

                                                           
1This model also corresponds to Gordy e Heitfield (2003)’s restrictions R1 and R3. 
 

 



 

 In order to obtain the probability of a given portfolio loss some specific exposure to 
common factor, Vasicek uses Merton’s (1974) diffusion model and, assuming an infinite 
number of exposures of equal amounts in the portfolio and equi-correlation among the asset 
value of the borrowing companies, shows that the cumulative default rate distribution at 
default rate  is given by: x
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where Φ and Φ-1 are the cumulative standard normal distribution function and its inverse 
function respectively. We shall use equation (3) is section 4, in order to adjust the distribution 
fit model.  

 

3. The Bayesian and MCMC methods 

 Let’s first briefly review the main facts concerning bayesian statistics. Let  be a 
vector containing some data we wish to analyze. The basic idea behind the bayesian approach 
is based on the Bayes theorem: 
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which relates the observed data to some unknown parameters. Here, the main inferential 
difference from the classical procedures is the fact that ρ  is no longer supposed to be fixed 
but having a probability distribution, which also can be specified. For this task we define a 
prior distribution which combined with the information about the parameters contained in the 
data sample give us the conditional posterior parameters distribution. This resulting posterior 
distribution yields all information regarding the unknown parameters. 

 For the formulation of prior distributions there are two general cases to be discerned. 
The first is the case where the prior probability measures the degree of belief that an 
individual has in an uncertain proposition, and is in that respect subjective. In this case there 
is a natural choice for the prior distributions. The second and more common case arises when 
there is no previous knowledge about the parameters to be estimated. Box e Tiao (1973) 
define a non-informative prior as one that provides little information relative to the 
experiment. For this purpose usually overdispersed or flat prior are applied, e.g., uniform 
distributions on the unit interval or flat normal distributions for metric unrestricted parameters 
with a sufficient large variance to allow for a practically overdispersed distribution on a 
reasonable interval for the variance parameter. 

 The major drawback in Bayesian inference lies on the fact that, despite some simple 
and tractable models, the computations involved in solving the integral in the denominator of 
equation (2) are usually analytically intractable. Even thought the principles of algorithms 
which were able to overcome this limitation were already presented by Metropolis et al. 
(1953) and Hastings (1970), only the dramatic increase in computational power finally 
allowed the application in statistics. Once started by publications of e.g. Besag, York e Mollie 
(1991), Smith e Roberts (1993) or Gilks, Richardson e Spiegelhalter (1996), the so-called 
Markov chains Monte Carlo (MCMC) techniques became the method of choice in Bayesian 
Statistics given their flexibility, robustness, and almost unlimited applicability. 

 



 

 In order to state the Bayesian model, we note that the probability of asset i  defaults is 
given by  . Further, conditional on the portfolio factor  
this equation becomes
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completing a generalized linear model for Bernoulli data with a probit link function. 

 According to Göessl (2005), considering  the Binomial distribution, 
without loss of generality and for simplicity at this point it is supposed that in case of default 
every obligor suffers the same loss of one unit, i.e. their loss given default is 100%. Defining 
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),,( 1 tKt LL Κ=tL ),,( 1 tKt nn Κ=tn )',,( 1 RKR hh Κ=th , and also considering the other 
unknown parameters, the complete conditional likelihood function for period t  and a one 
year horizon can be rewritten in a concise form: 
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 Finally, assuming the case of no substantial prior information and therefore flat priors 
for the parameters, we complete our hierarchical Bayesian credit portfolio approach. After 
some algebraic manipulation, the corresponding posterior distribution of the unknown 
parameters conditional on the observations  is given by: ),( ln
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Thereby defining  as the uniform distribution in the unit interval and )1,0(U )',,( 1 Tff Κ=f , 
 can be calculated by integrating the numerator of equation (6) with respect to h , )|( nlL =P

ρ , and f . 

 The above model is easily estimated using the WinBUGS package. Basically, 
considering  debtors in the portfolio, and the number of defaults for given  risks 
classes in time 

tn tl k
t ,we specify a binomial distribution ( ) for the number of defaults. 

Further, with a uniform prior for the correlation parameter, 
),Bin( kt ktln

)1,0(~ Uρ , and a normal 
assumption for , for the common factor, we are able to estimate the benchmark 
distribution given by equation (5) by means of Markov chain Monte Carlo techniques trough 
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the Gibbs sampling algorithm (an excellent review of Gibbs sampling algorithm can be found 
in Geman and Geman (1984)). 

 The empirical data used in this work was supplied by Serasa S.A., the major Brazilian 
Credit Bureau, and includes monthly risk classification and default information for 367.500 
Brazilian companies from January 1998 to July 2006. The default’s concept used here is 
based on the idea of payment delays over then 90 days. We distinguish five samples based on 
information of firm’s net incoming and asset’s value. The rule for classification, which 
establishes the companies’ size classification used by Serasa S.A. in its credit reports, is 
showed Table 1 below: 

Table 1: Serasa S.A. Rules for risk classification 

If Net Sales or Assets Classification Sample Size 
<= R$ 1.2 million <= R$ 1.2 million Size 1 228.654 

<= R$ 4.0 million <= R$ 4.0 million Size 2 31.473 

<= R$ 25 million <= R$ 25 million Size 3 23.093 

<= R$ 50 million <= R$ 50 million Size 4 2.458 

> R$ 50 million > R$ 50 million Size 5 5.933 

  

Using this data, the aim is to derive the joint posterior distribution (JPD) of the portfolio 
correlation coefficient. We generated JPD’s samples using Markov chains of a length of 
30.000, taking every 3rd state of the chains, with a burn-in phase of 10.000 iterations. The 
number of iterations was monitored according the guidelines presented by Rosenthal (1994). 
Table 1 below shows the main results, in percentages. 

Table 2: Correlation results from the Bayesian approach. 

Firm's Size Mean Std. Dev. 2.50% 97.50% PSR Factor DIC
Size 1 2.53% 0.39% 1.88% 3.40% ~ 1 3103.71 
Size 2 0.97% 0.16% 0.70% 1.31% ~ 1 3284.78 

Size 3 1.93% 0.34% 1.38% 2.66% ~ 1 2155.2 

Size 4 3.53% 0.96% 1.92% 5.66% ~ 1 1158.5 

Size 5 2.55% 1.06% 0.78% 4.91% ~ 1 891.995 

  

As expected, the posterior densities for the estimated parameters, showed in Figure 1, 
conforms to the assumption of normality, since the combination of a normal likelihood with 
an uniform prior leads to a normal distribution (see Bernardo and Smith (1994), for details). 

 Convergence was stated based on the Gelman and Rubin (1992)’s potential scale 
reduction factor (PSR) and the Spiegelhalter, Best and Linde (2002) deviance information 
criteria (DIC)2.  Figure 2 below shows the trace graphics for each segment. 

 
                                                           
2 The potential scale reduction factor was close to unity for all models, indicating convergence. 

 



 

 

 

Figure 1: Posterior Densities for estimated correlation parameter, ρ. 
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Figure 2: Markov chains realizations for 10.000 iterations. 
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 According to Basel II the correlation parameter is set to 15% for residential mortgages 
exposures and 4% for revolving exposures. For other retail credit exposures the correlation 
has to be calculated as a weighted average of two extreme values by the following equation: 
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where: b = 35, ρmin = 0.03 and ρmax = 0.16. 

Then, the first conclusion we found indicates the asset’s correlation value for the 
Brazilian firm’s is remarkably less than the value proposed by the Basel Accord. This results 
potentially impacts on the capital adequacy rules, setting down the amount of capital a bank 
or credit institution must hold. Let’s now see the results obtained from the distribution fit 
approach. 

 

4. Distribution fit model and results 

 In order to compare and also validate the results we obtained in applying the Bayesian 
methodology, we also consider a classical distribution fit approach. The idea behind this 
model is straightforward: since Vasicek (1991) presented the closed form for the asset’s 
distribution in a portfolio, the aim is to apply a procedure which implements iterative methods 
that attempt to find estimates for non-linear models, specifically for the correlation parameter 
of the default’s rate distribution. 

 Technically speaking, nonlinear estimation is a general fitting procedure that will 
estimate any kind of relationship between a dependent (or response variable), and a list of 
independent variables. In general, all regression models may be stated as: 

ii fy ε+= ),( ρX          (9) 

in which the functional part of the model is not linear with respect to the unknown parameters, 
ρ , and we are able specify either standard least squares estimation or maximum likelihood 
estimation. For advanced details of the distribution fitting approach, see Karian and Dudewicz 
(2000). 

 In the case of our credit portfolio model, the idea is consider the formulae observed in 
equation (3): 
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and, using a nonlinear model estimation procedure, computes estimates for ρ . For this task 
we choose to use the method of non-linear least squares to estimate the values of the unknown 
parameters, trough the Gauss-Newton optimization algorithm. Results are presented in table 
(3) below: 

 

 

 



 

 

 

Table 3: Correlation results from the Distribution Fit approach. 

Firm's Size Mean Std. Dev. 2.50% 97.50% F Value Pr > F 
Size 1 0.28% 0.01% 0.27% 0.29% 107607 <.0001 
Size 2 0.33% 0.01% 0.31% 0.34% 56852.8 <.0001 

Size 3 0.81% 0.03% 0.75% 0.86% 29373.1 <.0001 

Size 4 3.84% 0.07% 3.71% 3.98% 70351.4 <.0001 

Size 5 3.93% 0.15% 3.64% 4.22% 18579.1 <.0001 

  

Again, our results show estimations for the asset’s correlation lower then the values 
proposed by the Basel II Accord. Usually, default’s rate variations are due to two sources: 
stochastic variations (Small Portfolio Effect) and correlations (Systematic Factor Effect). 
However, the Vasicek’s model used here, fairly based on a cumulated distribution function, 
which has the correlation ρ as it parameter, and assuming an infinite portfolio, doesn’t take 
into account the first source, leading to biased estimation of correlations when equation (10) is 
used in a distribution fit procedure. 

 To evaluate the bias’s size we conducted a Monte Carlo experiment for different 
default rates and portfolio’s sizes. We simulate default’s in hypothetical portfolios where all 
debtors have the same probability of default and defaults are supposed to be independent. 
Using the data from these hypothetical portfolios built under the assumption of non-correlated 
companies, we estimate the correlation parameter ρ  using the distribution fit approach. In 
fact, in this case, the estimated ρ  correlation coefficient is a measure of bias in correlation 
estimation of portfolios of same size and default rate. Table 4 below present the results 
obtained from 25.000 draws: 

Table 4: Monte Carlo simulations of estimates’ bias. 

Monthly Default Rate Portfolio's Size 
0,2% 0,4% 0,6% 0,8% 1,0% 

100 34,5% 23,0% 14,6% 8,4% 5,8% 
250 15,2% 4,4% 5,9% 6,0% 5,5% 
500 3,8% 5,3% 3,9% 3,2% 2,7% 
1000 4,6% 2,7% 2,0% 1,6% 1,4% 
2000 2,4% 1,4% 1,0% 0,8% 0,7% 
5000 1,0% 0,6% 0,4% 0,3% 0,3% 
10000 0,5% 0,3% 0,2% 0,2% 0,1% 

  

As expected, the Monte Carlo simulation shows that the bias’s size vanishes with as 
bigger as the portfolio’s size. The graph 1 below is quite intuitive: 

 

 



 

 

 

Graph 1: Evolution of estimation’s bias as function of portfolio’s sizes. 
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 Although ρ  estimates from distribution fit applied to non-infinite portfolios have a 
bias, it could be argued that, for the purpose of getting an accurate default distribution, it is 
better to use the biased parameter then the unbiased one when using the Vasicek model, once 
real portfolios always have a finite number of companies. 

5. Concluding Comments 

 In light of the main empirical results, two conclusions are straightforward: first, the 
asset’s correlation value for the Brazilian firm’s is remarkably less than the value proposed by 
the Basel Accord. Clearly these results reflect the structural characteristics of the firms in 
Brazilian, and couldn’t, naturally, be extending to other countries.  

However, it’s important to note that many empirical findings, as the ones in Gordy e 
Heitfield (2002), Demey et al. (2004), Rösch (2003), and Göessl (2005), among others has 
pointed to the direction of correlations values out and away bellow the ones recognized by 
Bassel II Accord.  

Our findings indicate that the  regulatory capital required by the Bassel II formulae 
could be as closer as possible from the real economic capital needed by the portfolio if the 
estimated values of the assets’ correlation parameter, ρ , were used of instead the ones 
imposed by the Basel II Accord. 
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