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ASSESSING SERVICE OPERATIONS IN THE SHORT AND LONG RUNS: 
EFFICIENCY ANALYSIS AND EMPIRICAL APPLICATION 

 
 
1 Introduction 
In this paper we present an optimization approach to assessing the performance of service 
organizations from an Efficiency Analysis standpoint. In what concerns the empirical 
illustration, even though the paper employs data from a sample of Decision Making Units 
(DMUs) pertaining to a public system of academic libraries, there is no loss of generality if 
and when other kinds of organizations are considered. Summing up, our approach combines 
in a simple way efficiency scores computed from the estimation of selected Data 
Envelopment Analysis (DEA) models and a long run evaluation provided by Markovian 
analysis.  
 
The text is organized in five sections that include this introduction. The second section brings 
together some background ideas and results that helped found the paper. In the next section 
the methodological procedure is explained, followed by empirical findings in the fourth 
section. Conclusions, limitations and pending issues are presented to close the text. 
 
 
2 Background 
The proposed approach relies essentially on the application of the so-called Efficiency 
Principle to assess organizational performance in a public university system of libraries. 
Following the literature, “organization” may be taken quite broadly as meaning both public 
and private entities, and even nonprofit ones among the latter (Nunamaker, 1985; Fox, 2001; 
Vakkuri, 2003; Smith and Street, 2005; Afonso, Schuknecht and Tanzi, 2006,).  
 
Data Envelopment Analysis (DEA)  
The Efficiency Principle simply states that, when studying the production process in any 
organization, whenever a production unit uses the same resources but yields greater quantities 
of output than another unit, it should be considered “relatively more efficient” (i.e., relative to 
one another), no matter how formally the productivity problem is analyzed. Analogously it 
should be considered “relatively more efficient” if it uses fewer resources and yields the same 
output. From an analytical standpoint these properties correspond to evaluating a library unit 
in terms of its position vis à vis an adequately defined and computed “efficiency frontier”, that 
is, the locus of all “equally best productive combinations of inputs and outputs”. Once 
identified the frontier, the performance of a specific library system may be evaluated by 
assessing the relative position of its component units relatively to each other and to the 
frontier. 
 
Although it may seem restrictive to anyone aiming at “comprehensively tackling” the 
complexities of organizational assessment, no doubt the Efficiency Principle states an idea 
that very few would agree to dispose of. In addition there is an established body of knowledge 
– namely, Data Envelopment Analysis (DEA), a class of mathematical programming models 
– with a now long tradition (Emrouznejad, Parker and Tavares, 2008) of being applied to a 
broad range of situations involving the analysis of production frontiers in a multi-unit, multi-
input and multi-output framework in such a way that usual parametric restrictions are absent. 
The so called nonparametric models of frontier adjustment, such as DEA, represent the 
efficiency frontier as the best observed practices, that is, as the maximum output obtained 



 

from an input bundle when considering all the empirically observed organizational units in the 
population studied.  
 
In applied work DEA has been used to evaluate several types of organizations, such as 
libraries (Chen, 1997-a, -b; Stancheva & Angelova, 2004; Miidla & Kikas, 2009), industrial 
plants, bank branches, education systems, hospitals and military units or systems, all properly 
understood as types of "complex organizations” (EMROUZNEJAD, PARKER & TAVARES, 
2008).  
 
This flexible and widespread applicability stems from the fact that a DEA model does not 
request the predefinition of a functional form for the production function, as it is the case in 
econometric regression approaches, also long employed in the case of public libraries (for 
instance, VITALIANO, 1997, 1998).  
 
Among the characteristics of interest of the DEA model that are relevant for the assessment of 
public organizations - subject to operate under the restriction of a budget a priori limited – 
mention must be made of the possibility to include in the analysis several inputs and outputs 
estimated by different units of measurement. It is also worth mentioning that the direct use of 
any empirically available inputs and outputs eliminates the need to define or redefine either 
resource or performance “indicators” of any type such as can be frequently found in the 
literature.   
 
Efficiency Analysis in the long run 
In a seminal methodological paper Tulkens and Vanden Eeckaut (1995) describe and explain 
the main issues relating to the role of time in nonparametric efficiency analysis, especially in 
what concerns alternative ways to accommodate empirical information into reference 
production sets that will be submitted to efficiency computations. Although they do not 
explicitly mention the long run, their presentation suffices to establish a neat picture on each 
possible approach to panel data efficiency analysis. Of particular interest here (see Table 1) is 
their classification (Ibid., p. 478-480) of the variety whereby the time dimension present in 
panels may be treated when investigating observed productive activity. 
 
Semenick Alam and Sickles (2000), Ahn, Good and Sickles (2000), and Wang and Huang 
(2007) are interested in directly tackling the long run into (in)efficiency analysis. The first two 
papers do this essentially by econometric techniques apt to specify a lag structure for the 
estimation of models of panel data in such a way that (long run) equilibrium may be discussed 
with appropriate techniques related to solving difference equations (e. g. cointegration 
analysis in nonparametric applications; see also the pioneering Sengupta, 1992).  
 
The paper by Wang and Huang (2007) introduces two new models to examine long run 
efficiency analysis: 
(a) a dynamic panel data model with a lagged dependent variable that happens to be 
endogenous with respect to both errors and the intercept in the equation to be estimated – so 
that conventional estimators are not enough and are conveniently replaced (p. 1306); this 
model allows to estimate the size of dynamic adjustment costs; and 
(b) a two-state Markov Chain model leading to the estimation, for each DMU, of its efficiency 
status as specified in their equation (2.12) (p. 1307).  
 
According to the authors “the Markov model is mainly designed to uncover a potential link 
between financial indicators and the flow between states” (p. 1307) and provides “valuable 



 

information (…) which renders opportunities to regulators and managers reallocating scarce 
supervisory resources” (ibid.). Specifically the Wang-Huang Markov model allows discussing 
long run evolution of the efficient status in two ways: 
(i) first, for each DMU, in terms of equilibrium values of efficient status by dealing with the 
corresponding difference equation (2.12) (p. 1307); 
(ii) second, for the set of DMUs, in aggregate (or “structural”, see Sengupta, 1997) terms by 
considering the difference equation in (2.5) (p. 1306).  
 
However they do not further pursue these ideas and do not compute any long run solutions in 
any of those cases. In addition, although they have modeled and specified the probability of 
one-step temporal transition from efficient (resp. inefficient) to inefficient (resp. efficient) 
state, there seems to be no indications as to how those probabilities might be used to compute 
long run “structural” distributions of the DMUs among the two states (“efficient” or 
“inefficient”). 
 
Using results from finite ergodic Markov chains (Kemeny and Snell, 1972, p. 130-131), and 
assuming one (estimated) aggregate transition matrix is available, it is possible to compute the 
long run distribution of the “system” (the set of DMUs) between the two states. This is an 
important goal to be pursued in this paper. 
 
 
3 Method 
Our proposed assessment procedure consists of three steps. The first two steps – involving the 
computation of efficiency scores and of operational plans in turn – are typically performed in 
many applications of Data Envelopment Analysis to empirical data on DMU performance. 
The third, a novel one, incorporates the “structural” long run assessment of efficiency. 
 
Data collection 
The case is summarized in Table 1 and follows the Tulkens and Vanden Eeckaut (1995) 
framework. We focus on Brazilian data collected from an integrated system of academic 
libraries pertaining to a traditional federal university in Rio de Janeiro.  
 

  Table 1 – Summary on case study 
Case 

(DMUs) 
Number 

of 
DMUs 

Number of 
variables 

Time 
Period 

DEA 
condition 
satisfied * 

TVE 
classification** 

DEA 
model 

University 
libraries 

37 7 2000 - 07 Yes Contemporaneous BCC-O 

Notes:  -*: number of DMUs not less than two (three) times the number of variables;  
**: classification of (sample) observed subsets by Tulkens &Vanden Eeckaut (1995, p. 479-480). 

 

Our example is supported by a convenience sample of 37 library units that correspond to more 
than 80% of the total population and that were selected for ease of access and overall data 
availability. Time periods refer to 2000 – 2007. Data were collected from the libraries’ 
centralized MIS and relate to three inputs (number of employees, physical area in square 
meters and number of volumes) and four outputs (number of visits, of loans, of registers and of 
consultations).  
 
Efficiency Analysis 
The efficiency of productive units has been calculated by means of a deterministic production 
frontier, whose construction process is implemented as the solution of a linear programming 
problem. This procedure, known as Data Envelopment Analysis (DEA), was initially 



 

introduced in the literature by Charnes, Cooper and Rhodes (1978, 1981) and later modified 
by Banker, Charnes and Cooper (1984). The most important difference between those two 
models is the possibility of tackling scale economies. The Banker, Charnes and Cooper model 
(BCC model), used in this study, allows to calculate a deterministic production frontier with 
variable scale yields. In addition, given the a priori restricted nature of public budgets, the 
output-oriented version was adopted. In this version the optimization problem to be solved is 
an output maximization problem such as  
 

Max µ,v (µ´yi/v´xi),  subject to : 
µ´yi/v´xi=1, 

µ´yj/v´xj ≤ 0,  j=1, 2,..., N, 
                                                                   µ, v ≥ 0.                                                      (3.1) 

 
The solution of the appropriate linear programming problem provides numerical scores for 
each DMU that characterize them with respect to efficiency status. For each inefficient DMU 
an operation plan is also provided that indicates (re)allocative targets for the DMU to reach 
efficiency. Finally scores will also be needed to compute the transitions between the two 
states along the time period for the whole set of libraries. 
 
Markovian Analysis 
As soon as a transition matrix is available, first passage time and long run analysis are 
possible and will result from the computation of a fixed point for the transition matrix 
(Kemeny and Snell, 1972, p. 130-131). This fixed point is a probability vector containing the 
distribution of the “system” between the two states in the long run. 
 
In order to get a transition matrix from empirical data about the temporal behavior of a 
“system” of states it suffices to use the transition count (Anderson and Goodman, 1957; 
Billingsley, 1961; Wang and Huang, 2007, p. 1306) corresponding to the proportion of units 
in a given state and then count the transition between each pair of states in the period.  
 
In the present application there are six observed transition matrices, one for each successive 
pair out of seven years. If only the first transition matrix would be used to compute the fixed 
point, no doubt much information would be ignored. Since we do not follow the econometric 
approach (e. g., Wang and Huang, 2007), some other choice should be made.  
 
According to Kemeny and Snell (1972, p.131), when the number of time steps grows 
indefinitely one has  

 
lim (1/n)(P + P2 + . . . + Pn) =  [1  1  1     1]’π            (3.2), 

 
where  n  is the number of steps;  Pn = (( pij 

(n) )) is the nth power matrix of the one-step 
transition matrix P, whose ( i ; j ) element then represents the probability of transition from 
state  i  to state  j  after  n  steps;  [1 1 ,…, 1]’  is a column vector with all elements equal to 1, 
and  π  is precisely the fixed point, that is, a constant vector containing the long run 
equilibrium distribution between states whose components are nonnegative and sum to 1 (as 
any probability vector), and such that πP = π.  
 
Note that the matrix product in the right hand side of (3.2)  is a square matrix of the same 
order as  P  and with all lines equal to  π. The expression “long run equilibrium” is then 
adequate since  π  does not depend neither on time, nor on the initial state. 



 

 
Also note that  
 

lim (1/n)(Pn + Pn + 1 + . . . + P2n) = lim [(1/n)(P + P2 + . . . + Pn)Pn ] =  
[lim (1/n)(P + P2 + . . . + Pn)] [lim Pn] = [1  1  1     1]’π [lim Pn] = 

lim ( [1  1  1     1]’π Pn ) = [1  1  1     1]’π.           (3.3) 
 
Therefore, in order to compute the fixed point  π, any power of the one-step transition matrix 
could be used. This is just another way to say that, since  Pn   is the transition matrix after  n  
steps, the long run may be taken as starting from it as well, for any  n, in accordance to the 
intuitive notion of long run. 
 
The first application of Markovian Analysis can be performed by using the so-called 
fundamental matrix (Kemeny et al., 1964, p. 405) associated to  Pn , the transition matrix after 
n steps, and its equilibrium vector to compute mean first passage time and mean recurrence 
time (Ibid., p. 411-414) for any state of the system.  
 
A possible link between the mean first passage time (from a given state to another, for 
example, “inefficient to efficient”) and efficiency analysis stems from the fact that the time 
before the (mean) first passage into efficiency may suggest how urgent may be the changes 
indicated in the “operations plans” provided by efficiency analysis (corresponding to the 
second step in the proposed procedure). Analogously, the time before the first passage into 
inefficiency might signal to how alert managers must remain even when their initial (or 
present) position may be comfortable.  
 
The second application of Markovian Analysis is also related to the fixed point of  Pn , since  
π  directly provides the long run equilibrium of the system (Kemeny and Snell, 1972, p. 131). 
This equilibrium may be interpreted as the long run (percent) distribution of units between 
states, since system transitions between states are defined as counts of units’ transitions. 
 
 
4 Results 
In this section findings are presented relating to the selected academic libraries. Comments 
follow the order of proposed steps – computed efficiency scores, operation plans and long run 
distribution. 
 
First step – efficiency scores are computed and libraries may be ranked accordingly 
A sample profile for the 37 DMUs (see Table 1) is given in Table 2 for the last year of the 
period of study. Accordingly, computed the coefficients of variation imply that the libraries 
are quite different from one another on most attributes. 
 
The basic results for any DEA analysis – namely, computed efficiency scores – appear in 
Table 3. Since every efficient DMU has a score equal to 1, the 8 libraries in that situation 
along 2000-2007 have been removed from Table 3, given that, by the very definition of 
efficiency, there is no way to improve their productive performance. These DMUs present a 
quite robust performance and deserve attention no matter how “benchmark” is understood.  
 
Relatively inefficient DMUs receive a score less than 1. Note that some inefficient libraries 
never visited the efficient frontier and are even far away of it; in that sense they also deserve 
managerial attention. Note also the situation of library unit number 5 – it has been efficient 



 

along the whole period except for one year. Why is that so? Should this situation be ascribed 
to measurement error or does it mean a real although negligible loss in performance? In terms 
of management action all these signals must likely be accompanied by an individual follow-
up. 

Table 2 – Sample profile for university libraries in 2007 
 

Variables 
Min 

 
Max 

 
Mean 

 

Standard 
deviation 

 

 
Coefficient of 

Variation 
 

Number Employees  1 33 8,41 8,06 95,83% 

Total area ( m2 )  37 6000 865,16 1400,03 161,82% 

Volumes  872 277134 35228,92 53343,38 151,42% 

Visits  108 137385 20974,68 33970,98 161,96% 

Registrations  0 5603 1043,38 1115,40 106,90% 

Loans  0 30191 5116,03 6578,68 128,59% 

Consultations  0 66638 8091,62 12228,71 151,13% 

Service mix (number) 5 13 9,54 1,87 20% 

 
Table  3 – Efficiency scores* and yearly averages : 2000 – 2007 

DMU SCORES 
2000 

SCORES 
2001 

SCORES 
2002 

SCORES 
2003 

SCORES 
2004 

SCORES 
2005 

SCORES 
2006 

SCORES 
2007 

1 1,000 0,841 1,000 1,000 0,605 0,811 0,680 1,000 
2 0,571 1,000 1,000 1,000 0,965 0,943 1,000 1,000 
3 0,305 0,936 0,845 0,661 0,542 0,846 0,775 0,574 
4 0,989 0,960 0,769 0,783 0,829 1,000 1,000 1,000 
5 1,000 1,000 1,000 1,000 1,000 0,947 1,000 1,000 
6 1,000 0,696 0,742 0,494 0,584 0,757 0,548 0,650 
7 1,000 0,731 0,870 0,452 0,353 0,127 0,466 0,624 
8 0,941 1,000 0,471 0,559 0,782 0,650 0,626 1,000 
10 0,620 0,895 0,712 0,974 0,619 0,740 1,000 0,679 
11 0,528 0,660 1,000 0,779 0,727 1,000 0,847 0,646 
12 0,404 0,590 0,287 1,000 1,000 1,000 1,000 1,000 
17 1,000 1,000 0,627 1,000 1,000 1,000 0,336 0,370 
18 0,604 0,815 0,696 1,000 1,000 1,000 0,807 1,000 
19 1,000 1,000 1,000 1,000 1,000 0,959 1,000 0,921 
20 0,600 1,000 0,867 0,779 0,743 0,498 0,543 0,560 
21 0,401 0,302 0,396 0,109 0,138 0,371 0,145 0,115 
22 1,000 1,000 0,507 0,654 0,337 1,000 0,842 0,121 
24 0,391 0,501 0,492 0,387 0,395 0,931 0,319 0,320 
25 0,733 0,690 0,840 0,329 0,307 0,482 0,640 0,506 
26 0,838 1,000 0,467 0,683 0,236 0,562 0,384 0,863 
27 0,334 0,412 0,410 0,407 0,358 0,223 0,496 0,241 
28 0,892 0,574 1,000 1,000 1,000 1,000 1,000 0,945 
30 1,000 0,442 1,000 0,555 0,972 1,000 1,000 0,820 
31 0,071 0,064 0,055 0,143 0,185 0,020 0,010 0,017 
32 0,450 0,781 0,928 0,873 0,870 1,000 1,000 1,000 
34 0,562 1,000 1,000 1,000 1,000 1,000 1,000 1,000 
35 1,000 0,793 1,000 0,665 0,757 0,354 1,000 1,000 
36 0,107 0,202 0,196 0,172 0,113 0,353 0,401 0,381 
37 0,359 1,000 1,000 1,000 0,892 1,000 1,000 1,000 

Mean 
(n=37) 0,7486 0,8077 0,7886 0,7691 0,7381 0,7993 0,7801 0,7663 

Pct 
effic. 45,96% 48,65% 48,65% 48,65% 40,54% 51,35% 54,05% 51,35% 

Note. * - All libraries with scores equal to 1 for the whole period have been excluded.  



 

 
Second step: operation plans indicate optimal changes for each library along the period 
Operation plans are always produced as a typical result from a DEA solution. In the present 
application they are conveniently summarized in Table 4. In every individual matrix (not 
exhibited here) showing the allocative change for each (inefficient) library and each year, 
there are indications of resource decrease and output increase; this information is summarized 
in that table and deserves managerial attention. The same occurs as long as volume discards 
are concerned: they deserve special attention because collections may not be altered, as well 
as some individual titles (such as current textbooks or books of historical interest) should not 
be disposed of.  
 

Table 4 – Average operation plans : 2000 - 2007 
Inputs 2000 2001 2002 2003 2004 2005 2006 2007 

Employees 
( number ) - 1,44 - 1,15 - 0,76 - 1,29 - 0,93 - 1,18 - 0,61 - 0,81 

Area 
( m2 ) - 60,75 - 71,04 * - 29,85 - 70,35 - 48,94 - 143,47 - 88,05 - 136,27 

 
Volumes 

( number ) - 3064,48 - 3373,49 - 1880,71 - 4601,0 - 6447,08 - 651,77 - 4720,75 - 3153,65 
Note * - this figure relates to a single library. 

 

In any case, since there is evidence that inputs may be reduced alongside with output being 
increased, managers must keep alert and proactive as to take advantage from potential 
efficiency gains along time. Allocative changes such as those indicated in Table 4 (and much 
more so in individual worksheets) may also serve to compare recommended paths against 
observed actions in a yearly basis for each DMU and to that extent help evaluate individual 
performance.  
 
Third step: first passages, mean recurrence and long run distribution for the system of 
libraries 
Again, efficiency scores from Table 3 provide data to compute, for the whole system of 
libraries and the whole time period, several possible forms of transition matrices between two 
states - “efficient” and “inefficient”. How should they be combined into a single matrix to 
serve as the initial ingredient needed to apply the Markovian hypothesis? What form seems 
the most intuitively acceptable? 
 
Given that we are working with contemporaneous reference sets (see Table 1), data for 2000-
2007 allow obtaining an empirical version of the n-step transition required from (3.3) as the 
seven factor product of the seven observed one-step matrices, say P1P2   P6P7 . Even though 
other such products, say involving less seven factors, would qualify from the theoretical 
viewpoint, since all of them are built from empirically observed “powers”, it seems preferable 
to use the most of available information from one-step transition matrices along the observed 
period, hence the seven factors.  
 
Given that we are working with contemporaneous reference sets (see Table 1), data for 2000-
2007 allow obtaining an empirical version of the n-step transition required from (3.3) as the 
seven factor product of the seven observed one-step matrices, say P1P2   P6P7 . Even though 
other such products, say involving less seven factors, would qualify from the theoretical 
viewpoint, since all of them are built from empirically observed “powers”, it seems preferable 
to use the most of available information from one-step transition matrices along the observed 
period, hence the seven factors.  



 

 
In order to compute both the fundamental matrix and the long run equilibrium distribution, as 
argued in the third section on the basis of equations (3.2) and (3.3), we employ successive 
products of yearly transition matrices, instead of powers of the same (initial or otherwise 
chosen) transition matrix. Note that since the product of two transition matrices is of the same 
nature, the interpretation of the seven factor product makes full sense.  
 
Therefore we can take the seven factor product matrix A defined as 
 

A = P1P2P3…P6P7            (3.4) 
 
as a good candidate to be used when solving the fixed point problem, since it incorporates 
more information than each individual matrix and any other products, in addition to being a 
good picture of the successive one-step, two-step until seven-step transitions, in the spirit of 
equation (3.2). The “seven factor product” approach simply amounts to envisage the long run 
as starting from the transitions occurring from the seventh year on. This more natural choice 
improves upon the “averaging” approach appearing in Carvalho et al. (2012-a). 
 
Since there are only two states, it is very simple to compute the fundamental matrix. 
Therefore, according to Kemeny et al. (1964, p. 411), the mean first passage time from 
“inefficiency” to “efficiency” is approximately equal to 1 year and 10 months. This means 
that if a given unit is inefficient today and if no managerial action is taken, then on average it 
will take 22 months for the unit to become efficient. This delay may be compared to the time 
required for any possible remedial measures to become effective, say revised budgeting or 
training.  
 
Considering (3.4), to obtain the (estimated) long run distribution of the system between the 
two states the fixed point equation  πA = π  is solved to give: 
 

πE ( percent efficient ) = 51, 5%;  πNE ( percent inefficient ) = 48,5% . 
 
Note that the first percent differs from the mean percent (48,7%, equal to the median) in the 
last line of Table 3 and these mean and median are closer to the inefficient percent. In this 
sense it might be argued that short run averaging is less benevolent and that long run analysis 
seems to be of a different nature vis-à-vis the arithmetic of numerical individual scores. 
Remember that products of transition matrices bring into play all the transitory visits to the 
two states along the time span.  
 
The fixed point  π  in the equation  πA = π  also provides directly the mean recurrence time 
(Kemeny et al., 1964, p. 413) for the states of the system, that is, the mean time required 
before the system returns to a given state having started in that same state. The mean 
recurrence time is approximately equal to 2 years in both cases, so that the period of two years 
seems to be critical in the sense of monitoring the return of a state to itself. In the case of 
inefficiency it represents a sort of “safe mean time span” for managers to try to change the 
operating conditions facing inefficient units, Since the operation plans already point to 
“optimal changes” by unit, managers may evaluate for which units those changes would be 
feasible within (the next) two years. Note that on average an inefficient unit will return to 
inefficiency four months before it may reach efficiency for the first time, if no managerial 
action is taken.  
 



 

 
5 Summary and conclusion 
Upon assuming the Efficiency Principle as a guideline to organizational evaluation, this paper 
presented a model for library assessment in the short and long runs by combining two 
approaches – the DEA approach to efficiency analysis and the Markovian assumption that 
introduces a long run perspective. From a methodological viewpoint it extends and improves 
upon previous work by Carvalho et al. (2012-a, b). 
 
We proceeded in three steps. The first step is typical of DEA-based efficiency analysis since 
one or more DEA models (Estellita Lins and Angulo-Meza, 2000) are estimated to provide 
efficiency scores allowing (Marinho, 2001) to rank the sampled DMUs according to their 
relative efficiency. The second step is also typical in DEA applications and consists in 
identifying “optimal” quantitative (re)allocations that would signal to managers how they 
might, if so wanted, lead inefficient DMUs toward the efficient frontier. These quantities 
might equally help to evaluate allocative gaps between optimal prescriptions and observed 
allocations.  
 
The third step introduces a very simple long run perspective. We assume that any DMU can 
be in either of two aggregate states – “efficient” or inefficient” – and that the set of DMUs is 
accordingly classified in either state according to the proportion of DMUs in each state. The 
Markovian assumption (Kemeny and Snell, 1972) of constant transition probabilities between 
states will then allow to establish a long run equilibrium distribution between states. Findings 
have shown that the three step model uncovers quantitative aspects that may be of assistance 
to managers committed to efficiency in the short and long runs.  
 
In the first two steps, typical DEA models provide both rankings and operation plans that not 
only help evaluate library performance, but may also assist inefficient library units in their 
quest for efficiency.  
 
In the third step we rely on Markov Chains for long run assessment. We first compute an 
aggregate measure of the distribution of the productive system (the “organization”) between 
two states – efficient or inefficient. To the extent that individual DMUs are assigned to a 
“state” according to their performance and that transitions refer precisely to those states, our 
approach is aggregate in the sense that only “systemic” information remains. Levels of 
efficiency scores relating to specific DMUs are in that sense voluntarily lost (cf WANG and 
HUANG, 2007, p. 1306). Nonetheless, the number of states does not imply any limitations in 
practical applications. At the moment of writing we are completing an application where three 
states are defined in order that classification inaccuracy may be depicted. 
 
The other useful application of the Markovian approach provides better knowledge 
concerning the time delay required for efficiency to be attained for the first time when a 
prescribed operation plan happens to be adopted, as well as about the time during which an 
undesired (inefficient) situation will persist if that adoption is postponed. This timing aspect 
may help library managers in preparing their planning and control schedules and figures with 
a view toward the efficiency endeavour. For example, an inefficient unit will on average 
return to inefficiency four months before it attains efficiency for the first time, so that 
managerial attention to such time lags may become critical . 
 
Future research - based on alternative ways of using scores to define “states” and on 
alternative ways of obtaining a transition matrix to start the process - is likely to provide 



 

better theoretical as well as empirical information that will allow for a better assessment of the 
proposed model. Some alternatives might be a simply “statistical” treatment (e. g., “above the 
mean” as in Wang and Huang, 2007, p. 1307) of what “good state” means or else the use of 
fuzzy concepts to help define that same idea of “good performance”. One remaining though 
important issue refers to how to deal with errors in measuring efficiency scores. Econometric 
modeling will likely be needed to explore and understand the effects of (statistical) errors. 
 
Last but not least, the long run is here depicted in a very simple way and the “short memory” 
assumption involved in Markovian approaches may appear inappropriate in many contexts. 
The adequate approach to this issue still requires more work. 
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